

Specifying Foam Systems

- 1. Identify and size hazards
- 2. Size and select the proportioning system
- 3. Design the apparatus

NOT THE OTHER WAY AROUND!

Note: If doing a retrofit – obviously the vehicle already exists. You still need to complete steps 1 and 2. At that point you may find it makes more sense to install the system on a different vehicle than you originally planned.

- What is your fire protection responsibility?
 - Residential
 - Wildland
 - Industrial
 - Marine
 - A Combination

- What are the applications?
 - Class A, B, C or D?
 - Bomb suppression
 - Chemical or biological decontamination

- Determine critical application rates and duration:
 - 15, 125 or 25,000 GPM?
 - Minutes or hours?
 - Guidelines available –
 NFPA
- Plan to succeed!

Understanding critical application rate

The flow rate (water or solution) on a fire at which the fire does not grow:

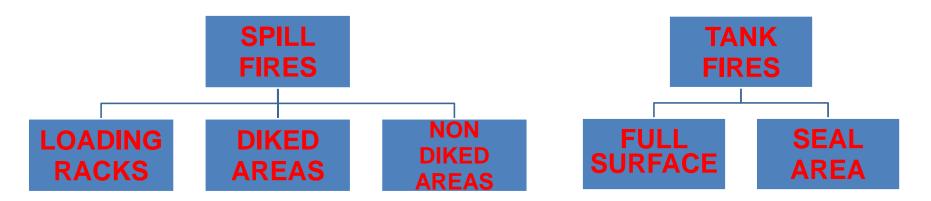
- Exceed the critical application rate and the fire is extinguished
- Flow less than the critical application rate and the fire burns unchecked

Goal: How much water to treat

• Determining critical application rate

Class A applications – Structures

IOWA Formula: Cubic feet / 100 = GPM


Example: 50' x 40' x 16' Structure 32,000 Cubic feet / 100 = 320 GPM

Determining critical application rate

Class B applications – Liquid fuels NFPA 11

11
NFPA 11
Standard for
Low-Medium-
and High-Expansion
Foam
2010 Edition
Sector Scenetory

- NFPA 11 recommends minimum application rates
 - Flow
 - Duration

• Spill Fires – Non Diked Areas

Minimum Application Rates	GPM per SQ./FT.		
Hydrocarbons:			
AFFF/FFP	0.10		
Protein / Fluoroprotein	0.16		
Alcohol / Polar Solvents:			
AR Concentrate (Typical)	0.2		
Min Discharge Time	15 Min		

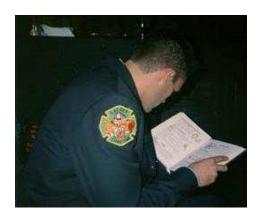
AFFF 2500 Sq/Ft X .10 = 250 GPM AR-AFFF 2500 Sq/Ft X .20 = 500 GPM

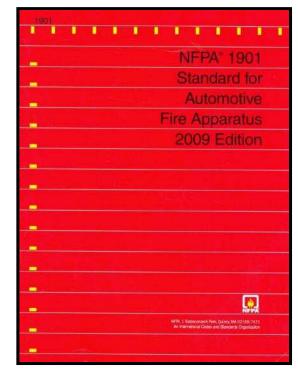
• Tank fires – Full surface (Type III)

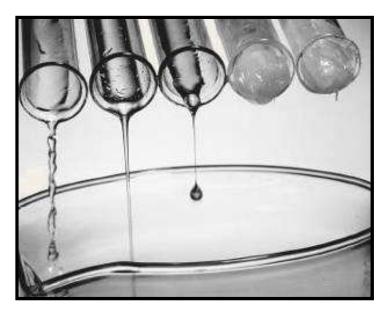
Minimum Application Rates	GPM per SQ./FT.		
Hydrocarbons	0.16		
Alcohol / Polar Solvents	Refer To Listings (0.3)		
Min Discharge Time			
Flash Point Above 100 F	50 Min		
Flash Point Below 100 F	65 Min		
Crude Petroleum	65 Min		

AFFF 2500 Sq/Ft X .16 = 400 GPM

- What water additives?
 - One or several?
 - System compatibility?
- What are proportioning rates?
 - Class A: 0.1% to 1.0%
 - Class B: 1%, 3% or 6%
 - Gels: See manufacturer's recommendations




- Determine minimum and maximum flow rates:
 - How many discharges are required?
 - What are the Min/Max flow rates of each discharge?
 - How many in service at any given time? Min/Max?


- Systems available span a wide range of:
 - Performance
 - Features
 - Cost (Both initial install and ongoing operational)
- Thoroughly Investigate:
 - Understand the capabilities and limitations of each system
 - No one system does it all
 - Realistically define your needs based on the hazards

- How accurate?
 - NFPA (minimum standard) or something tighter?
 - Know the accuracy of the system(s) you are considering and calculate the wasted foam:
 - Cost
 - Tank size
 - Logistics

- Concentrate viscosity?
 - System capability?
 - How does system manufacturer rate the system?
 - Foam concentrate?
 - How does the concentrate manufacturer measure viscosity?

- What are operating pressures?
 - Intake and discharge: Min/Max?
 - Will you be using both normal and high pressure discharges?

- Operating conditions:
 - How long are hose lays?
 - What is nozzle elevation?
 - High rise or aerial operations?
- Will these or other conditions affect your system's operation?

- Duration of the attack?
 - How much foam will you require?
 - Where will your foam supply come from?
 - On-board tank
 - Off-board pickup
 - Both
 - Refill system
- Will the system(s) you are considering be capable of handling these sources?

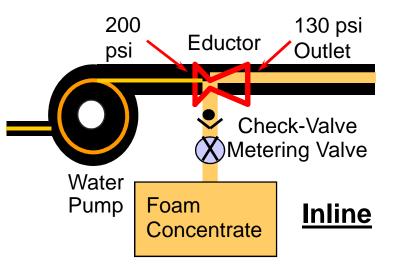
- Do you require the ability to calibrate the system to the viscosity of the concentrate(s) you will be using?
 - Can the system be calibrated to the viscosity of the concentrate without consuming foam?
 - Can you flow foam where you operate to calibrate the system?

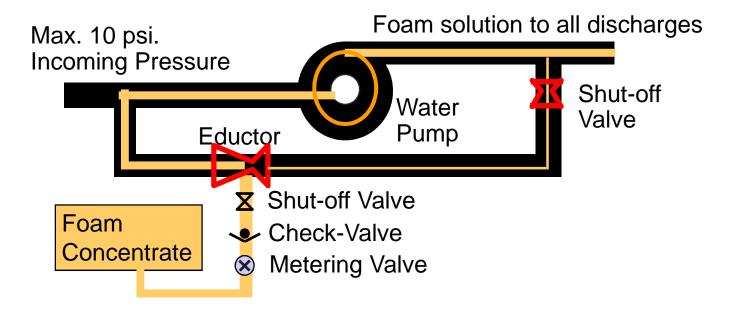
- Require the ability to periodically test the system for readiness?
 - Concentrate flow required for testing?
 - Allowed to flow foam for testing?

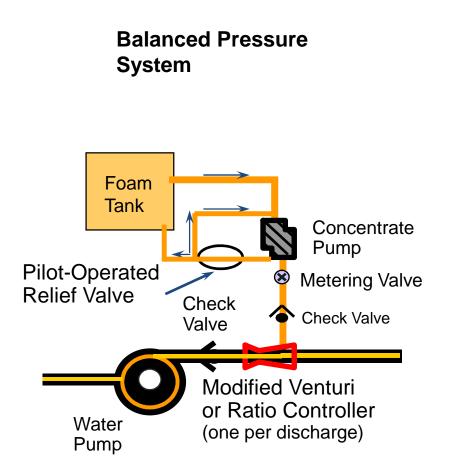
• A word of advice...

Keep It SIMPLE!

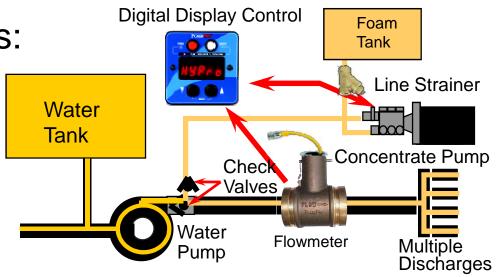
- Selecting The System
- Numerous
 technologies available
 - Eductors
 - Balanced Pressure
 - Direct Injection
- Several sources of power
 - Water
 - DC
 - Hydraulic




- In most cases, there are several manufacturers offering systems in each category
 - Within a category not all are the same across competitors
 - Carefully check out performance, features, capabilities, limitations and reliability
 - Research the specs
 - Talk to current or previous users


- Eductors
 - Nozzle, In-line and By-pass
- General Characteristics:
 - Narrowest performance range
 - Lowest system and installation cost
 - Accuracy varies
 - Operating cost varies
 - Single point injection
 - Inlet pressures (typically 200psi)
 - Hose lay length
 - Nozzle & elevation
 - On-board / Off-board foam pickup capabilities can vary

- Around-The-Pump
 - Same General Characteristics as Inline and By-Pass Eductor Systems


- Balanced Pressure
 - Pump based (DC/Hydraulic/PTO), water powered, bladder tank
- General Characteristics:
 - Medium performance range
 - Higher system and installation cost
 - Accuracy varies
 - Operating cost varies
 - Some have pressure loss
 - Single or multiple injection point
 - On-board / Off-board foam pickup capability varies

- Direct Injection
 - Pump based (DC/Hydraulic)

Direct Injection

- General Characteristics:
 - Widest performance range
 - Higher system and installation cost
 - Highest accuracy
 - Minimal pressure loss
 - Single or multiple injection point - varies
 - On-board / Off-board foam pickup capability varies

Disch	Size	Min Flow	Max Flow	Min %	Max %	Min Conc	Max Conc
1) Rear	3"	80	500	0.3%	1%	.24	5
2) PreCon	1-1/2"	30	200	0.3%	1%	.09	2
3) Op Panel	2-1/2	40	300	0.3%	1%	.12	3
							10

Designing the Apparatus

- Key points to discuss with installer
 - Power requirements for your system
 - Electric
 - Load requirements
 - Load balancing
 - Hydraulic
 - PTO availability
 - HP requirements
 - Cooling Oil to Air or Oil to Water?
 - Water
 - Pressure / flow loss
 - Filtration

- System Footprint?
 - Accessibility requirements
 - Service
 - Calibration
 - Maintenance
 - Repair
 - Any location limitations
 - Temperature
 - Physical damage due to
 - Road dirt
 - UV
 - Temperature
 - EMI /RFI interference

- Plumbing requirements?
 - Accessibility requirements
 - Service / Calibration / Maintenance / Repair
 - Common fitting approaches
 - Threaded / Flanged / Grooved Victaulic
 - System Requirements
 - Flow meters straight pipe
 - Foam concentrate injection point(s)
 - Provide drains for cleaning / cold weather

- Concentrate source?
 - On-board (single or multiple tanks) / off-board / both
 - Does the system require flooded suction or is it capable of drafting
 - Be sure to provide for:
 - Tank shutoffs
 - Foam strainers
 - Tank level and low-tank sensors
 - Foam selector valving
 - Foam tank profile

- Flushing
 - How?
 - Flush water pressure?
 - If gel, what will you be flushing the system with?
 - Does that require a separate reservoir to hold the flushing agent?

Questions?

Thank You & Stay Safe!

David Durstine ddurstine@akronbrass.com Michael Dupay mdupay@fireresearch.com